Arab Academy for Science and Technology & Maritime Transport College of Computing & Information Technology University/Academy: Arab Academy for Science and Technology & Maritime Transport Faculty/Institute: College of Computing &Information Technology Program: B. Sc. In Computer Science | Course title | Introduction to Artificial Intelligence | |--------------|---| | Course code | CS366 | ## Form no. (11A): Knowledge and skills matrix for a course | Course content | Week | Knowledge | Intellectual skills | Professional skills | General skills | |--|------|---|---|---|---| | Introduction to AI: Definition - History - Goals AI as Representation | 1 2 | Define what is AI. Show the AI model List the application of AI Define what is a state | | Solve some example | | | and Search. State Space. Search Strategy. | 2 | Define what is a state spaceKnow how to build a state space | | Solve some example
problems using state
space | | | Blind search techniques. | 3 | Define Blind Search List blind search
techniques | Differentiate between depth and breadth search Show the state space generated nodes using different blind search algorithms | Implement searching techniques | Show the use of general computing facilities. | | Informed (Heuristic)
search techniques :
Hill Climbing – Best
First | 4 | Explain the need for heuristic search. List the different heuristic search algorithms | Compare the search space between blind and heuristic search Apply the heuristic search on an example problem Detect the correct path to the solution based on the heuristic values. | Implement searching techniques | Acquire analysis and presentation skills. | | A* Algorithm | 5 | Know the A* algorithm search strategy | Apply the A* on an example Detect the shortest path | | | | | | | to the goal | | |--|----|---|--|---| | | | | | | | Admissibility –
Monotonicity –
Informedness of a
heuristic function | 6 | Define Admissibility – Monotonicity – and Informedness | Show that A* is admissible Show the informedness effect based on different heuristic functions | | | 7 th Week Exam +
Revision | 7 | | | | | Game trees | 8 | Know the min-max game playing algorithm Show the game strategy for three players game. | Apply the min-max algorithm on a sample game tree. | | | Alpha Beta Pruning
Algorithm | 9 | Demonstrate the alpha
beta pruning algorithm. | Calculate the alpha beta values at different levels of the tree. Detect the branches to be pruned Analyze the effect of the pruning algorithm Compare the results to results of the min-max algorithm | • | | Knowledge
Representation | 10 | List the different
knowledge
representations. Define the production
rules | Apply forward and
backward reasoning on
a set of production rules. | | | Expert systems & knowledge-based systems. | 11 | Define what an expert
system is. | Construct a decision
tree for an expert
system. | Develop an expert system Demonstrate skills in group working, team management, time management and organizational skills. Acquire analysis and presentation skills. | | 12 th Week Exam + | 12 | | | | | Revision | | | |--|--|--| | Propositional Logic: Syntax – Semantic – Proof by resolution refutation. | Define what propositional logic is of propositional disadvantages of propositional logic Apply residual of propositional expressional statement of propositional logic | | | First Order Logic :
Syntax – Semantic – | Define what first order logic is. List the advantages and disadvantages of the first order logic | | | First Order Logic :
Resolution -
Soundness –
Completeness | FOL define the soundness and completeness in FOL and completeness and are completeness. | he Soundness expleteness in expressions. | | Course Instructor | Head of Department | |--------------------|--------------------| | Course Histi uctor | Head of Department | Name: Name: Signature: Signature: